Парадокс Доунса-Томсона (англ. Downs-Thomson paradox) был выявлен в 1960-х годах Энтони Доунсом и Дж. М. Томсоном. Суть данного парадокса сводится к тому, что средневзвешенная скорость движения личного автотранспорта по дорожной сети напрямую зависит от скорости, с которой добираются от исходной до конечной точки пользователи внеуличного общественного транспорта (имеется в виду железная дорога, метро, автобусы и трамваи, движущиеся по выделенной полосе и т. д.)
В отдельный парадокс Пигу-Найта-Доунса (Pigou-Knight-Downs paradox) выделяют следствие из парадокса Доунса-Томсона о том, что при наличии общественного транспорта, увеличение пропускной способности дорог общего пользования приводит не к улучшению, а к ухудшению дорожной обстановки. Схожий эффект был показан Дитрихом Браесом в так называемом Парадоксе Браеса: согласно ему, добавление альтернативных путей к транспортной сети при независимом («эгоистическом») распределении нагрузки на её элементы может уменьшать эффективность её работы.
Происходит парадокс Доунса-Томсона из-за перехода пассажиров с общественного транспорта на личный под воздействием отложенного спроса. Отток пассажиров с общественного транспорта уменьшает прибыль его операторов и вынуждает их к увеличению интервалов, что заставляет пересаживаться на личный автотранспорт и других пассажиров. Однако при этом ухудшается и дорожная ситуация: поверив в улучшение пропускной способности дороги в часы пик, на неё начинают выезжать водители, которые ранее старались пользоваться дорогой вне пиковых часов. Оба этих фактора нарушают транспортное равновесие, приводят к взрывному росту потока автотранспорта на расширенной дороге, возникновению еще больших заторов и ухудшению обслуживания на общественном транспорте.
Парадокс Доунса-Томсона не универсален и применим лишь в случаях, когда существует развитая система общественного транспорта, и когда существующая дорожная сеть уже не справляется с автомобильным потоком. Существуют экспериментальные лабораторные и математические доказательства парадокса.
Я несколько дней в сериале ...
[Print]
Yarvoh